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Abstract 

The geometrical description of the Nonlinear Schr6dinger-Toda system hierarchy in the Sato 
Grassmannian with the action of the translation group is applied to the Hermitian one-matrix 
model. A family of derivative Nonlinear Schr6dinger system hierarchies with its lattices-- 
associated with the Volterra chain--which are auto-B~cklund transformations, is analyzed from 
a geometrical point of view. The Sato periodic flag manifold with the line bundles over it turns 
out to be the proper infinite-dimensional manifold in this case. The lattice appears as a square 
root of the action of the translation group; this can be understood as a reduction of the action of 
a translation group of a larger loop group. The reduction t2,+l = 0 of the Hermitian one-matrix 
model, essential in the double scaling limit, is shown to be described in terms of the derivative 
Nonlinear Schr6dinger-Volterra system hierarchy. The role of the heat hierarchy, self-similarity 
and auto-B~icklund transformations is pointed out. A characterization in Sato's Grassmannian and 
periodic flag manifold of the Hermitian one-matrix model is given. In the latter case we are 
concerned with the /2n+l = 0 reduction. 
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1. Introduction 

Since the seminal papers [4] ,  in which the role played by the Korteweg-de Vries 

equation in two-dimensional quantum gravity through a double scaling limit of the 
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Hermitian one-matrix model was pointed out, there have been a remarkable number 
of papers analyzing different aspects of the theory. We must also recall the important 
contributions of Witten [29] and Kontsevich [ 16] regarding the description of the 
moduli space for the intersection theory of complex curves with the use of the Korteweg- 
de Vries hierarchy. 

In particular, the geometry associated with these systems has been studied in a num- 
ber of papers [ 15,20,11] for different matrix models. The Sato Grassmannian is the 
infinite-dimensional manifold normally used; however, the Sato periodic flag manifold 
is necessary as well [20]. 

Integrability aspects of matrix models appear already before the double scaling limit 
is taken, see [9] and references therein. For the Hermitian one-matrix model, the semi- 
infinite Toda chain hierarchy and a string equation model the partition function. For the 
double scaling limit of the Hermitian one-matrix model one requires the odd sources to 
vanish; in that case the Volterra hierarchy appears. 

Recently [ 3] the Non-linear Schrrdinger hierarchy has appeared in connection with 
the Hermitian one-matrix model before the double scaling limit is taken. This was 
achieved within the pseudo-differential formalism for the Kandomtsev-Petviashvilii hi- 
erarchy. Moreover, this technique has been extended to study multi-matrix models. The 
string equation is a Galilean self-similar condition [ 12]. However, the Toda chain mod- 
els auto-B~icklund transformations of the Non-linear Schrrdinger hierarchy, as has been 
well known for years already [27]. Therefore, the connection of this integrable hierar- 
chy with the Hermitian one-matrix model is obvious once the role of the Toda chain is 
discovered. 

On the other hand the study of lattices and auto-B~icklund transformations of integrable 
hierarchies is currently a subject of interest [24]. 

Observe that the Non-linear Schrrdinger system hierarchy can be described as flows 
in the Sato Grassmannian Gr ~2~, and the Toda chain reflects the action of the translation 
group of the loop group LSL(2, C ) - - an  Abelian subgroup of the affine Weyl group-- 
[2,26,10]. Thus, it is natural to apply such a description to the Hermitian one-matrix 
model. 

This paper is mainly dedicated to the study of the geometry of the Hermitian one- 
matrix model. However, we are interested in lattices for derivative Non-linear Schrf- 
dinger system type hierarchies and its geometrical description. Firstly we analyze the 
non-reduced Hermitian one-matrix model and then the reduced case. 

The second section is an introduction of well known facts regarding the Hermitian one- 
matrix model and its relation with the Toda hierarchy. We introduce also the Non-linear 
Schr0dinger hierarchy and its auto-B~icklund transformations given by the Toda chain. 
The next section, Section 3, is dedicated to the local symmetries of the Non-linear 
Schr0dinger-Toda hierarchy, translations and scaling and Galilean transformations. A 
generalized string equation is presented and we prove Proposition 7, appearing in [ 12] 
without proof, where the Galilean self-similarity is shown to imply weighted scaling self- 
similarity; in [ 12] a detailed study of the geometrical aspects of self-similarity is given. 
Proposition 8 gives a integrable system characterization of the N-dimensional Hermitian 
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one-matrix model in terms of the heat hierarchy and auto-B~icklund transformations. 
We end the section by stating how the general string equation evolves with the auto- 

Biicklund transformations given by the Toda chain. The Grassmannian description, via 
the Birkhoff factorization in the loop group LSL(2 ,C) ,  of the Non-linear Schr6din- 
ger-Toda hierarchy is introduced in Section 4 and there one can find explicitly with 
which points the N-dimensional Hermitian one-matrix model is associated in the Sat() 
Grassmannian. 

The next section deals with a one-parameter family of derivative Non-linear Schr6din- 
ger type hierarchies, its lattices and the t 2 n + l  ---- 0 reduction of the Hermitian one-matrix 
model necessary in order to perform the double scaling limit. Section 5 is devoted 
to the introduction of these integrable hierarchies and of the associated lattices. The 
lattices will be constructed in Section 6 by geometrical means and are shown to give 
local and non-local auto-B~icklund transformations of the integrable hierarchy. In this 
section these integrable systems are described with the use of the periodic flag manifold 
and line bundles over it, via the principal subgroup L ( S L ( 2 , C ) , C )  of LSL(2, C) 
and a factorization problem given by a classical r-matrix which is not a difference of 
projectors. Then we construct a square root of the action translation group of LSL(2, C) 
that reduces to the principal subgroup and gives the lattices mentioned. The points in 

the Sato periodic flag manifold corresponding to the t2n+l = 0 reduction of the N- 
dimensional Hermitian one-matrix model are given at the end of this section. Finally, 
in Section 7 a Miura type map between the Non-linear Schr6dinger equation and its 
derivative deformation is introduced. The geometrical description in terms of fibrations 
is given and we find a square root of the Toda chain. We end by showing that the square 

root can be obtained as a reduction of the action of the translation groups of larger loop 
groups, for example LSL(3, C), giving generalized Non-linear Schr6dinger hierarchies. 

2. The Hermitian one-matrix model and the NLS-Toda chain hierarchy 

This section is a schematic introduction of the Hermitian one-matrix model (HMM) 
and its relation with the Non-linear Schr6dinger-Toda chain hierarchy. Firstly, we remind 
the reader of the standard construction that connects the HMM with the Toda chain 
hierarchy. Then, the Non-linear Schr6dinger (NLS) hierarchy and its auto-Backlund 

transformations are introduced. 

2.1. The HMM and the Toda chain 

The HMM [9] has as partition function 

zN( t )  := cNfdMexp(Tr V ( t , M ) ) ,  

where t := {tn}n>_0, tn < 0, are the sources or couplings of the model, M is a N by N 
Hermitian matrix, i.e. M = M t, cN is a normalization constant and 
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V( t ,  A) := Z ~"tn. 
n_>O 

Consider the scalar product 

( f , g )  := f daexp(V(a))f(a)g(a), 
R 

and the polynomials {Pn}n>0 of the form 

P . ( a )  = a" + o ( a " - ~ ) ,  

that fulfill the relations 

(P., Pro) = 6.m exp(~b.). 

Then, the partition function can be expressed as follows: 

The dynamics of ~,~ in t gives the action of the renormalization group in the partition 
function. To analyze the dependence of the ~n in the couplings t one introduces the 
semi-infinite matrices Q, ~ defined as 

exp(q~n)Qnm = (Pn,APm), exp(q~n)'Pnrn = (Pn, (d/dA)Pm).  

The explicit form of Q follows from the recurrence relation for the orthogonal polyno- 

mials: 

a P . ( a )  = P.+l (a)  + S .P . ( a )  + RnPn-l(a) ,  

with R0 = 0 and 

Rn+I = exp(~bn+l - qbn), Sn = Od/)n, 

where 0 = O/atl. It turns out that Q is a tridiagonal Jacobi matrix of the form 

Q = Z ( E n , . + I  -k- S.En,. + Rn+IEn+I,n) , 
n>_O 

where E.,., is the matrix with its non-zero entry, which is 1, located at the site given 
by the intersection of the nth row with the ruth column. Any semi-infinite matrix M 
splits into its strictly upper triangular part M+ and its lower triangular part M_. i.e. 
M = M+ + M_. It easily shown that 

~ , = -  ~--2(Q) . + 
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If  d = ~-]~n>_O andtn, where On = a/Otn, is the exterior derivative associated to the 
couplings t and we construct the 1-form 

dtn Q., 
l 

n>O 

then Q satisfies 

dQ = [to+, Q] ,  

and the constraint, the so called string equation 

[~ ,  Q] = 1. 

The flow equations are those of the semi-infinite Toda chain hierarchy, in particular 

~ Rn = R,  ( S, - Sn-1 ) ,  aSh = Rn+ l - Rn, 

o r  

02q~n = exp(~bn+l - ~bn) - exp(~bn - ~bn-I ), 

the well-known semi-infinite Toda chain equation. 

2.2. The NLS system hierarchy and the Toda chain 

Recently, Bonora and Xiong [ 3] pointed out the role of the Non-Linear Schr6dinger 

(NLS) system hierarchy. Their analysis is based on KP type pseudo-differential opera- 
tors. In Integrable Systems theory the connection between the NLS system hierarchy and 

the semi-infinite Toda chain has been known for years already [ 13,2]. In fact the Toda 

chain appears in the NLS system modeling auto-Backlund transformations. In a series of 
papers [ 24] one can find a systematic study, based on symmetries, of lattice-differential 

integrable systems. 

The functions defined by 

pin) := Rn exp(0-1Sn-1 ) = exp(q~n) , 

qC.) := _ exp( --0-1Sn-i  ) = - exp( -~bn-I ) 

for each n satisfy the NLS system hierarchy that we are about to introduce. 

Definition 1. The NLS system hierarchy for p, q is the following collection of compat- 
ible equations: 

Onp = Pn+l, Onq = -qn+l ,  

where n >_ 0 and p . ,  qn and hn are defined recursively by the relations 



6 M. Maaas/Journal of Geometry and Physics 17 (1995) 1-24 

pn = Opt_ l + phn-  1, 

qn = -Oqn-1 + qhn- l ,  

Ohn = 2(pq~ - qp~),  n > 1 

with the initial data 

Po = qo = 0, ho = 1. 

For n = 2 the equations are those of the NLS system 

02p = 02p - 2p2q, 02q = - a 2 q  + 2pq 2. 

The Toda chain hierarchy is complemented by the Toda chain equation, which in the 
new variables reads 

q(n+l) = _ l / p ( n ) ,  p(n+l) =p(n) (_p(n)q(n) + a21np(n)).  

For a solution of the NLS at the site n these equations give a new solution at the site 
n + 1, an auto-Biicklund transformation. 

Observe that a In ZN = ~n~O 1 Sn so that, using the Toda chain equations, one has for 
the specific heat of the HMM [3] 

N--I  

a 2 in ZN = Z ( R n + I  - Rn) = RN = _p(N)q(N).  
n=O 

3. The string equation and self-similarity 

As we have seen the renormalization flows in the HMM are the integrable flows of the 
semi-infinite Toda chain hierarchy, which happens to be equivalent to the coupling of the 

NLS system hierarchy with the semi-infinite Toda chain equation, the latter modeling 
the auto-B~icklund transformations of the former. However, there is a constraint, the 

string equation, that must be satisfied. As was shown in [3] the string equation can be 

formulated in each site n in the lattice in terms of the functions Rn, Sn and therefore in 
terms of p(n) ,  q(n). Later it was proven that this constraint is the Galilean self-similarity 
condition for the solutions p(n), q(n) of the NLS system hierarchy [ 12]. For the relation 
with the Heisenberg ferromagnetic model see [ 18]. 

Now, we introduce the translations and the Galilean and scaling transformations, local 
symmetries of the NLS system hierarchy and compatible with the discrete symmetry 
given by the Toda chain. 

Definition 2. Let D, 

#(t)  :=t+O,  
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be the action of translations, where 

0 := {0n}n>0 E C ~ .  

Then, the following proposition follows: 

Proposition 3. I f  (p, q) is a solution to the NLS system hierarchy then so is (O 'p ,  O* q). 

However, there are also two local non-isospectral symmetries. One is the scaling sym- 
metry, and the other is the Galilean symmetry. Now, we define them. 

Definition 4. The Galilean transformation t H ya( t )  is given by 

Z (  n + m  ) ~/a( t )n : =  amtn+m , 
m 

m>_O 

where a E C. 

The scaling transformation t ~-~ 9b(t) is represented by the relations 

9b(t)n := enbtn, 

where b E C. 

One can show that 

Proposition 5. I f  (p, q) is a solution of  the NLS system hierarchy then so are (YAP, Y~,q) 
and (eb¢~p, eb~q) .  

The related fundamental vector fields, infinitesimal generators of the action of trans- 
lation, Galilean and scaling transformations are given by 

an, n > O .  
n>_O n>_l 

respectively. They generate the linear space C{0,, ~', 'Y}n___0, which is the Lie algebra of 
local symmetries of the NLS system hierarchy; the non-trivial Lie brackets are 

[On, ~] = non, [0n+I,"Y] = (n + l)On, [q,T] = 2% 

Consider the following vector field belonging to this Lie algebra, 

X : = O + a ~ , + b ~ ' ,  O = Z 0 n 0 n ,  
n_>0 

defining a superposition of translations, Galilean and scaling transformations. 
If (p, q) is a solution of the NLS system hierarchy then there is a 1-parameter family 

of solutions (p~, q~) generated by the vector field X. A self-similar solution under any of 
the mentioned symmetries is a solution which remains invariant under the corresponding 
transformation. 
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Then we have, 

Proposition 6. A solution (p, q) of the NLS system hierarchy is self-similar under the 

action of  the vector field X if and only if it satisfies the generalized string equations 

X p ÷ b p = O ,  X q ÷ b q = O ,  (3.1) 

The Galilean self-similarity condition is the string equation for the HMM. 

Notice that when X = "y ÷ )--~n___0 0n0n, one can perform the coordinate transformation 
tn+l ~ tn+l ÷ On/(n ÷ 1). Thus, the coefficient 0n is equivalent to a shift in the time 

coordinate tn+ l . 

Now, if X = 5" + )--~n>00,an, we can define the transformation t,+l H tn+l + 
0 , + l / ( b ( n +  1 )) and obtain in the new coordinates a vector field corresponding to scaling 

and a term of the type 0000. This last term can be understood as follows. Given a solution 

(p, q) to the NLS system hierarchy then (exp(b( 1 + 200))9~p, (exp(b( 1 - 200) )9~,q) 

is a solution as well. So solutions self-similar under the vector field X correspond, in 

adequate coordinates, to self-similarity under this particular scaling, which we shall call 

( 1 + 200, 1 - 200) weighted scaling. 
Now we shall prove that Galilean self-similarity implies scaling self-similarity. We 

have 

Proposition 7. I f  (p, q) is a solution to the NLS system hierarchy self-similar under 

the action of  the vector field 

+ ~ OnOn, Y 
n>_O 

then it is also self-similar under the action of the vector field 

This proposition simply says that the L_l-Virasoro constraint implies the Lo-Virasoro 
constraint. 

Proof We have 

q = 0 .  

Therefore, we obtain the relations 

Y + Z OnOn) Pn+l = --npn, 
.>_0 / 

qn+l = --nqn, 
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where, for example, we have used the fact that 2pn+l = Onp, p is killed by ~'+~-~n>00nOn 
and the commutation relation of this vector field and On. One can equally deduce 

( y+~-~Ononlhn+'=-nhn'n>o ] 

Because 

O.+lp = ( ½0n + 2hn+l)p,  O.+lq = -(½On + 2hn+l)q 

it follows that 

( ) , (  / ) ¢+ZOnO.+l p=~ T+ZOnO n p + 2  (ntn+On-l)hn p, 
n>_o n>_o ] 

( ¢+~_OnOn+l q=-~ T+~-~OnOn q - 2  ~-'~(ntn+On-l)hn q, 
\ .>_o n>_o \.>~ 

Observe that 

OnZ(mtm+Om-l)hm=nhn+ ( T+ ZOmOml m>_O I 

Hence, when (p, q) is self-similar under T + ~m>O 0mare we have 

Z(n t ,  +On-l)hn= Z Onhn+llt:o. 
n>_l n>_O 

This implies 

and the proposition follows. [] 

Observe that the NLS system hierarchy contains as reduction the heat hierarchy. In 
fact when q = 0 then p satisfies the heat hierarchy, 

anp = On p. 

The general solution to it will be 

= f d A  P(A) exp(V(t ,A)) ;  (3.2) p(t) 
J 
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however, if we want this solution to be Galilean self-similar we need "yp = 0, thus--  
integrating by p a r t s - - f d A  d P ( A ) / d A  exp(V(t,  A)) = 0, so that P is constant almost 
everywhere. The starting point p(1) = exp(~bl), q(1) = _ exp (-~b0), is the result of 

applying the B~icklund transformation to p(0) = exp(~b0), q(0) = 0, which is a heat 

hierarchy reduction with p(0) (t)  = f da exp(V(t ,  h) ). 

Proposition 8. The N-dimensional HMM is obtained after N consecutive auto-Bticklund 

transformations of  the solution of the NLS system hierarchy which is a Galilean self- 

similar solution of  the heat hierarchy. 

Obviously, the auto-B~icklund transformations of the NLS system hierarchy given by 

the Toda chain commute with the translational symmetries. Moreover, they commute also 
with the non-isospectral Galilean and scaling transformations. The following proposition 

will be proven in the next section by geometrical means. 

Proposition 9. Given a solution, say p(n), q(n), of the NLS system hierarchy, self- 
similar under the action of X (n) = 0 + a~ + bf, then its Biicklund transform, given 
by the Toda chain equations, say p(n+l),q(n+l), is self-similar under the action of the 

vector field X (n+l) = X (m + boo. 

Observe that this result implies that the weights in the weighted scaling case are 

shifted by a Toda chain Backlund transformation. 

4. The Grassmannian and the NLS-Toda hierarchy 

The NLS-Toda system hierarchy, as was shown in [2], has a geometrical interpreta- 

tion in an infinite-dimensional Grassmannian [21]. This can be realized once a Birkhoff 
factorization problem is considered. 

We define the vacuum wave function, an infinite set of commuting flows in the loop 
group [21] LSL(2 ,C)  of  smooth maps from the circle S 1 := {A E C : IA[ = 1} to the 

simple Lie group SL(2, C) of 2 x 2 unity determinant matrices as follows: 

O(t ,A)  :=exp(V( t ,A)  H I 2 ) . g ( A ) ,  (4.1) 

where g is the initial condition and we are using the standard Weyl basis {E, H, F} of 
the Lie algebra st(2,  C).  

The loop algebra Lal (2 ,C)  when extended to the affine Lie algebra of type Al I) 
has an associated affine Weyl group generated by the reflections r0, rl defined by the 
simple roots a0, al  [ 14]. The translation group generated by T = rlro is an Abelian 
subgroup of it. Observe that if 8 = a0 + al is the imaginary root then the AllLroot 
system is A = {nS, n6 + O'l}nEZ, and the action of T is given by T(n6) = n6 and 
T(n6 + ai ) = (n qz 2)6 + am. At the level of the loop algebra the adjoint action of 
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o) 
0 ~- i  , 

is an action of the translation group. This element commutes with H. 

Definition 10. The shifted vacuum wave functions are defined by 

~b (") := T -n . ¢. 

Observe that 

~p<") (t,  A) := exp(V(t,  a ) H / 2 )  • g~" ) (a ) ,  

where g(") := T - " . g .  Denote by L+SL(2,C)  those loops which have a holomorphic 
extension to the interior of S l [21] and by L~-SL(2, C) those which extend analytically 
to the exterior of the circle and are normalized by the identity at oo. 

The Birkhoff factorization problem for a given tp (") ( t)  consists in finding the repre- 
sentation 

~p(n) = (~(n))  -1 . ~p~+n), (4.2) 

where tp¢__ ") ( t)  E L~-SL(2, C) and ~p¢+")(t) E L+SL(2, C),  and is connected with the 
NLS system hierarchy. The element ¢¢n) can be parametrized by functions p(n), q¢,) in 
such a way that ~,~") is a solution to the factorization problem if and only if p(n), q(n) is 
a solution to the NLS system hierarchy [2,10]. To this end, one considers the equation 
that follows from Eq. (4.2), 

- -  - e _  Ad a H/2, 0~(__ n) . 

and factorizes ¢s¢_ ") as follows: 

~¢_.> = ( ¢ . ) .  4~. ) ,  

where 

In((") a-mz,}, m, q5 (") =exp A ~,~ H ; 
m>_ I 

now Z.~ ") ( t )  C Im ad H and Oj~.~ ) can be expressed as polynomials in p~ ) ,  q~n) and 
its 0-derivatives. 

From Eq. (4.2) it also follows that 

• = P÷ Ad ¢/") (dr n / 2 ) .  (4.3) 

Here id = P+ + P_ is the resolution of the identity related to the splitting 

Lst(2, C) = L+g[(2, C) • L~-sI(2,C). 
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Then, X (n) 
integrable hierarchy is equivalent to the condition 

[d -  x ( n ' , d -  X ~"'] =0.  

One also has 

,,,'"+" ( ) ' ( )  :=~.+ . 0 3  ) =O<"+~) "T- ~. ¢,<.) -x 

and the lattice equations--Toda chain hierarchy--are 

• + Ad T, <Tn)X ( n )  . 

The parametrization of 0(__ m in terms of p(n), q(n) gives 

x(n) = Z L(mn)dtm' 
m>0 

where 

m 
L~n)(A) : = Z  " (n) Q(n) _(n) E h(mn)H + AIam-j , := Pm + q(m ") F,, 

j=0 

and 

M. Maaas/Journal of Geometry and Physics 17 (1995) 1-24 

is the zero-curvature 1-form for the NLS system hierarchy, therefore the 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

W = C { A  n (~2,  - ~ 1 )  , An (~02, -(Pl)}n_> 0,  

then we have the associated subspace 

,i .(+n)=(A_Olnp(n) p(n))  
_ (p( , ) ) - I  0 " 

The equation corresponding to tl is the semi-infinite Toda chain. The system of equations 
(4.4) and (4.6) is the NLS-Toda system hierarchy. 

Observe that a solution to the NLS system hierarchy is fixed by the coset g .  
L+SL(2, C).  However, the homogeneous space LSL(2, C) /L+SL(2 ,  C) is isomorphic 
to the Grassmannian Gr (2) [21]. Sato's Grassmannian [22] is the set of subspaces, say 
W, of 7-[ = C2~A -1, A], the Laurent expansions, commensurable with 7-/+ = C2[A], the 

Taylor expansions, and such that AW C W. In the Segal-Wilson version ~ is replaced 
by the Hilbert space L 2 (S 1 , C 2). 

The Baker function w(t) E LSL(2 ,C)  corresponds to [28,6] 

w = ~/,_ . exp( tH)  = ~9+ • g - l .  

If we introduce the notation 

g = ~02 ~b2 ' 
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with ,~W C W, in the Grassmannian Gr (2), [21,23]. The Baker function is the unique 

function with its rows taking its values in W such that P + ( w . e x p ( - t H )  ) = 1. Obviously 
we have 

CglW = LIW 

and also 

cgnw = Lnw. 

The rows of the adjoint Baker function w* = (w - I  )t are maps into the subspace 

W* = C {An~, An~}~>0 C Gr (2), 

where 

t2D :---- (qgl, ~ 2 ) ,  ~) := ( ~ 1 ,  ~ 2 ) -  

We shall adopt this subspace as a representative of the coset g .  L+SL(2, C). 
The discrete map between initial conditions g(n) ~ g(n+l) models the auto-B~icklund 

transformations for the NLS system. For the Baker function on has 

W (n) H W (n+l) = ~t'(+n)w(n)T. 

It was shown in [ 12] that those initial conditions g giving self-similar solutions under 
the action of the vector field X are characterized by 

Sg .g  -I + A d g K  = ( O + f ) H ,  (4.8) 

where 

t~ := (a  + bA) d/dA, 

for some K E L+~[(2,C) and some f E L~-C, where O(A) := ~-~,~>_oOnA ". From this 
condition Proposition 9 follows. 

Proof of Proposition 9. Given a solution g(n) with f(n) E L-~C then g(n+l) = T - i .  g(n). 
Observing that b'T -I • T = (b + aA-1)H and A d T - I H  = H one concludes that g(n+l) 
satisfies (4.8) with f(n+l) = f(n) d- aA -1 E L~C and 0 ( n + l )  ----- 0 (n) "At- b. [] 

The self-similar solutions under the action of the vector field X of the heat hierarchy 
are as stated in the following 

Proposition 11. The function 

p ( t )  = / d A  exp(V(t ,A)  + 0 ( A ) ) ,  

R 
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where 
a 
r o(/z) 

o(a) := Jd.77 -,, 

is a solution of the heat hierarchy invariant under the action of the vector field X. 

Proof The generalized string equation (3.1) when applied to q = 0 and p given by Eq. 
(3.2) implies 

~ ( a )  - 0 ( a )  
P(A) 

almost everywhere, from which the proposition follows. [] 

Notice that when a = b = 0 the definition of 0 fails, only constants are translational 
self-similar solutions of the heat hierarchy. The heat hierarchy reduction is equivalent to 
the following nilpotency property of the initial condition: 

g(A) = 0 1 " 

From the results of [ 12] one can deduce that the self-similar solution p of the heat 
hierarchy is connected with the unique solution P of the following ODE: 

n - I  

d f Z On / dl~lzn-m-1 (a + bA) ~l--~(A) - 20(A) f (A)  + Z Am exp(0(/z))  =0,  
n>0 m=0 R 

with asymptotic expansion 

f ( a )  ~ O ( A - 1 ) ,  a ~ .  

(4.9) 

(4.10) 

Therefore, for the N-dimensional HMM, the associated solution to the NLS-Toda 
system hierarchy is given by the initial condition 

(AN AN f(A) ) 
g ( a )  = 0 a - N  " 

Theorem 12. The points, say W (N), in the Sato Grassmannian Gr (2) corresponding to 
the solutions of the NLS-Toda hierarchy given by the N-dimensional HMM are 

W (N) = C{(An+N,0), (An+Nf(A), zn-N)}n~N, 

where f is the solution of Eq. (4.9) with b = 0 and asymptotic expansion (4.10). 

Observe that they never belong to the Segal-Wilson Grassmannian. If the requirement 
b = 0 is removed the above theorem gives the points in the Sato Grassmannian corre- 
sponding to general self-similar solutions of the NLS system hierarchy obtained after N 
consecutive B~icklund transformations--Toda chain--of the heat hierarchy reduction. 
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5. Derivative NLS type hierarchies, the Volterra chain and Biicklund 
transformations 

15 

For the double scaling limit of  the HMM one needs to disconsider the odd flows, 

that is t2,+1 = 0. It is well known that the semi-infinite Toda chain is replaced by the 

semi-infinite Volterra chain [9] .  As we shall show, this is connected with the derivative 
NLS system type hierarchies. 

However, let us first introduce a slight generalization of  the lattice-differential inte- 

grable hierarchy appearing in this reduction. 

Definition 13. For each c C C the generalized derivative NLS system hierarchy, denoted 

by dNLS(c ) ,  for the couple of  functions u, v depending on t = {t2n}n>_O is the following 

set of  compatible equations: 

02nU = U2n+l q- (C -- 1)g2nU, t92nV = --O2n+l --  ( £  --  1)g2nO, ( 5 . 1 )  

where u2.+1, v2n+j and gzn are defined recursively by the relations 

u2.+j = 32uz.-t  + 2ug2. + (c + 1)UVU2n-1, 

/:2n+l = - -32 t :2n- I  Jr- 2VgZn "}- (C -4- 1)UVO2n-l ,  

tgZgZn -- (C + 1 )UPCgZg2n_2 -- (UO2O2n_l -~ UOq2U2n_l) , 

with the initial data go = 1, ul = u, vj = v, g2 = - u v .  

For n = 2 the equations are 

04U ----32U -'[- 2(c  - 1 )uvO2u + 2cu2c92 v - C( C + 1)U3U 2, 

34U ---- --O~22V + 2(c  - 1)uvOzv -}- 2cv202 u + c ( c  -k- l ) u 2 v  3, 

a complex version of  a system considered in [7] ,  which for c = 0 is the system analyzed 

in [5] and when c = - 1  is the dNLS equation studied in [17].  

I f  02 -1 is a primitive of  02 one constructs the following Miura type transformation: 

Proposition 14. The pair  of  functions given by 

u( c') = u(c)  exp ( - ( c  - c ' )O(  1 (u( c )v (  c) ) ) , 

v(c ' )  = v(c)  exp ((c  - c')O~ I ( u ( c ) v ( c )  )) , 

is a solution to the dNLS(c I) if  u( c ), v( c ) are solutions of  the dNLS(c). 

(5.2) 

(5.3) 

One has 

R(c )  : = - u ( c ) v ( c )  = R(c ' )  =: R. 

In the next section we shall prove, by geometrical means, the following 

Proposition 15. Given {u (n), v (n) }n~z satisfying the lattice equations 
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a2u (n) = --u (n) (u(n+l)v(n+l ) + CU (n) V (n)),  

a2v (n+l) = v(n+l)(cu(n+l)v(n+l) + u(n)v (n)) 

(5.4) 

(5.5) 

with 

u(n)v ('+l) = - -  e x p  ( ( c  - -  1 ) a ~  l (u (n+l)v ( n + l )  - u(n)v (~))), (5.6) 

then, i f  f o r  some  part icular  n the funct ions  u (n) , v (n) are solutions o f  the dNLS(c)  system 

hierarchy, f o r  any  integer m the couple u (m) , v (m) is a solution as well. 

Observe that the equation satisfied by Rn = - u ( n ) v  (n) is the Volterra chain 

c~2Rn = Rn(Rn+l - R n - I ) .  (5.7) 

This lattice gives non-local auto-B~icklund transformations for the dNLS(c) system 
hierarchy as follows. 

Proposition 16. The transformation 

u ~n+l) = (u(n))Cexp ( ( c  2 - 1 )a ]q (u (n )v (n ) ) )  (a21nu ~) + cu(n)v(n)) ,  (5.8) 

U ( n + l )  --  - -  (u(n))-c exp ( - ( c  2 - 1 ) a ~ l ( u ( n ) v ( " ) ) )  , (5.9) 

maps  a solution (u (n ) , v  (n)) tO a new solution (u(n+l) ,v(n+l))  o f  the dNLS(c)  system 

hierarchy. 

Proof. Eq. (5.4) gives u(n+Ov (n+l) in terms of u (") and v(n); introducing this in Eq. 
(5.6) one concludes 

( u ( n ) )  c U ( n + l )  ---- - -  e x p  ((1 - c 2 ) a f  1 (u(n)v ( n ) ) ) .  

Using 'this and Eq. (5.4) one has the desired proof. [] 

Observe that in the above proof we have used the symmetry u -*  hu, v --~ h - i v ,  for 
some constant h, of the dNLS(c) system hierarchy. 

Only in the cases c = +1 do Eqs. (5.8) and (5.9) give local auto-B~icklund transfor- 
mations. In general, it is possible to construct a local auto-B~icklund transformation if 
one considers in a separate way even and odd sites in the lattice. 

Proposition 17. The transformation defined by 

U ( n + 2 )  = U (n) ( a2  I n  u (n) + cu(n)v(n)) c 

× (a2(ln(a21nu (n) + cu(n)v(n)) )  - u(n)v(n)) ,  

U(n+ 2)  = _ _  ( u ( n ) )  - 1  (a2 lnu (n) +cuOOvO0)  -~ , 

(5.10) 

(5.11) 
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gives solut ions u (n+2) , O (n+2) f r o m  solutions u (~) , v (n) to the dNLS(c)  system hierarchy. 

Proo f  Using Eqs. (5.4) and (5.9) one can verify that the following identity holds: 

u(n)/)(n+2) = -- ( _ u ( n + l ) u ( n + l ) ) - c .  

This implies Eq. (5.11).  The Volterra chain (5.7) gives 

u(n+2)u(n+2) = -02( ln(02  lnu (n) + cu(n)u (n)) ) - u(n)u (n), 

which together with the just deduced Eq. (5.11 ) ensures the truth of  Eq. (5.10).  [] 

In general we have two separate families {u (2"), v (z")} and {u (2"+1), v ~2n+l) } satisfy- 

ing the same lattice. 
As examples we consider three particular values of  c, namely c = 1 , - 1 , 0 .  Recall 

that when c = 4-1 then Eqs. (5.8) and (5.9) are local. Thus, we consider the induced 
transformation. When c = 1 one has 

1 v(n+l) = _l/U(n). 
v(n) (u(n)) 2 ' 

u(n+l)  _--02U(n) q- 

For c = - 1  we have 

U(n+l) - 032U (n) 
(u(n)) 2 

u(n), U(n+l) = --U (n), 

the lattice considered in [27,24,1 ], giving auto-B~icklund transformations for the dNLS 

system hierarchy. 
When c = 0 Eqs. (5.8) and (5.9) are non-local, hence we study Eqs. (5.10) and 

(5.11), 

u = la2u "  - - , 

v(n+2) = - - 1 / u  (n) , 

a B~icklund transformation, that with the notation u (n) = exp(q~n ) reads as a modification 

of  the Toda chain 

cg~qbn = (exp(~bn+2 - ~bn) - exp(~bn - ~b~-2)) 02qbn. (5.12) 

We see that there are two families {u (2n) , v (2n) }n~Z and {u (2n+1), v (2~+1) }~ez of  solutions 

of  (5.12) connected through 

¢92 u(n) = --U (n) u(n+l )u(n+l ). 

6. The periodic flag manifold and the dNLS(c) system hierarchy 

The dNLS(c )  system hierarchy can be understood through a factorization problem 
associated to a particular solution of  the modified classical Yang-Baxter  equation [ 10]. 
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In this section we are going to generalize that construction in order to obtain the 
B/icklund transformations of the previous section. The Sato periodic flag manifold FI (2) 

[21 ] and certain line bundles over it replace the Sato Grassmannian. 
The Coxeter automorphism [ 14] generated by the adjoint action of C = exp(DrH/2) 

defines the Lie subalgebra 

L ( z [ ( 2 , C ) , C )  = {X E Lzl(2 ,C)  : X ( - a )  = AdC X(A)}.  

This is the set of loops of the form Ab(A2)E + a(h2)H + a-lc(a2)F. This subalgebra 
is isomorphic to Lsl(2, C);  in fact is the principal realization of the affine Lie algebra 
of the type AI 1) [14]. Its root subsystem Ac = {2nf,2n6-4-al}n~Z, is invariant under 

the action of the translation group of Lsl(2, C).  The corresponding Lie group is 

L ( S L ( 2 , C ) , C )  = {g E LSL(2 ,C)  :Cg( -A)  = g(a)c}, 

its elements being of the form 

a(A2 ) ab(A 2) 
A-Ic(A 2) d(h 2) ) '  

where ad - bc = 1 [26]. 
Consider the following reduction of the vacuum wave function introduced in (4.1): 

~(even) (t, ~.) "= exp (v(even)(t, ,~.) 1-1/2)" g(~.), 

with 

V (even) (t, A) := Z A2nt2n 

n>0 

and g E L(SL(2 ,  C ) , C ) .  
The left multiplication by the translation element T is not well defined for this 

reduction. Nevertheless, observe that in the non-reduced case the transformation g(n) ~_, 
g(n+l) = T - I .  g(n). a with a E L+SL(2, C) gives the same results as those stated in the 
previous section. This allows us to construct an action of the translation group over our 
reduced vacuum wave function, i.e. preserving the reduction; one only needs to choose 

a = r l a  where rl := e x p ( E ) e x p ( - F ) e x p ( E )  and a E L ( S L ( 2 , C ) , C )  7 /L+SL(2 ,C) .  

Proposition 18. The action of the translation group given by 

g~--~T - l . g . r l ,  g E L S L ( 2 , C )  

reduces to an action over the principal subgroup L(SL(2,  C),  C) 

So we define 

Definition 19. The vacuum wave functions are defined by 

~(even,n) := T-n .  ~9(even). r~. (6.1) 
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Note that ~b (even'2n) ---- - T  -2n" Ip (even), in fact T -2 is the generator, in the principal 

realization, of the translation group of AI 1), see Section 4. 

We now modify the induced Birkhoff factorization in L(SL(2,  C),  C) by considering 
a classical r-matrix [25]. The resolution of the identity id = P+ + P0 + P-  associated 
with the splitting 

L(~I(2, C),  C) = L + (sl(2, C) ,  C) ® CH ® L 1 (~[(2, C),  C ) ,  

where L~- stands for those loops with holomorphic extension to the interior of the circle 
normalized by 0 at A = 0, and L [  for those with analytical extension to the exterior of 
the circle and normalized by 0 at A = ~x~, gives a classical r-matrix R := P+ + cPo - P -  

for any c E C. The exponent±at±on, say R+, of the endomorphisms R± := (R -t- 1 ) /2  = 
+P+ + (c i 1) /2  P0 to the Lie group L(SL(2,  C),  C) gives a natural extension of the 
Birkhoff factorization, see [ 10,25]. The factorization to consider is 

ip(even,n) = ( ~ ! n ) ) - I  .~/(n) 

with ¢ ~ ) ( t )  E R + L ( S L ( 2 , C ) , C )  satisfying the Cayley condition O(ff+ .  K+) = 
¢_ • K_, see [ 10,25]. The solution to this factorization can be expressed [ 10] in terms 
of functions u (n), v (n), solutions of Eqs. (5.1). The procedure is analogous to the one 

exposed in the previous section. 
Instead of Eqs. (4.3) and (4.5) we have the formulae 

= • = R_ md~b(n)dV (even) n / 2 ,  (6.2) 

7-(n) "--'h(n+l)'-- W+ . rl- . -1 =~t!n+l) .T_l  . (~l/!n) ) -1 (6.3) 

The lattice-differential integrable hierarchy can be formulated as in Eqs. (4.4) and 
(4.6). The parametrization of ~n)  in terms of the functions u (n) , v (n) gives the following 

expressions: 

X(")= Z L~"~dt2m' 
m_>0 

with 

2m-- 1 
L(n) 2m :_ Z .~2m-jQj(n, j_ l(c.+_ | ) Q ( n ) ,  

j--o 

where 

Q(n) o(n) t_l n(n) , (n) IZ" , (n) 
2j : : " 2 j  " ' '  ~--2j+l :=~2j+l~"[-t'2j+l "' 

and 

T(n) = e x p ( _ l ( c _ l ) O 2 1 ( u ( n + , ) v ( n + , ) _ u ( n ) u ( n ) ) )  ( A u (n) ) 
v (n+l) 0 " 
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When c = 1 the factorization is the one induced by the Birkhoff factorization in 
LSL(2 ,C) .  The dNLS(1) system hierarchy can be obtained from the NLS system 
hierarchy by reduction, just take the odd times equal to zero, t2n+l = 0, and the initial 
condition g • L ( S L ( 2 , C ) ,  C),  then identify u = p, v = q. The action of the translation 

group when reduced is the one given in (6.1). In this case the moduli space will be the 

following homogeneous space: 

L(SL(2,  C) ,  C ) / L  + (SL(2,  C) ,  C).  

Because of the principal isomorphism the following identifications hold [26]: 

L ( S L ( 2 , C ) ,  C) ~ L S L ( 2 , C ) ,  

L+(SL(2,  C) ,  C) ~ B+SL(2 ,C) ,  

where B+SL(2,  C) is the set of maps in L+SL(2, C) such that its holomorphic extension 
to the interior of S l when evaluated at ,~ = 0 is an upper triangular matrix. Therefore, 

the moduli space is isomorphic to the periodic flag manifold FI (2) [21]. 

The periodic flag manifold FI (2) is the set of couples of  subspaces, say V,W E Gr <2), 

such that the periodicity condition AW C V C W holds and dim W/V = 1 [21 ]. Given a 

initial condition 

( ~ l ( ' A 2 )  h~l(/[2) ) 
g(,A) -- ,~_lq~E(,A2 ) ~2(,,~2) • L(SL(2,C),C) 

and using the notation • = (~pl,~P2) and q~ = (~1,~2) the associated point in Fl (2) is 

(V,W) with 

v = c { ~ ,  a"~,  a"~3}.>0, w = c{a"~ ,  a"~3}._>0. 

The initial conditions associated with the N-dimensional t2n+l = 0 reduction of HMM 

are 

g = 0 _,~-2n 

for N = 2n, and 

( A2n+lf(A) A2n+l ) 
g = - A  -2n-l 0 

for N = 2n + 1. Here f( ,~)  =: AF(,~ 2) is an odd function in A, a solution of (4.9) with 
b = 0 and 0(A) = ~ 02hA 2" and having the asymptotic expansion (4.10). 

Theorem 20. The solutions to the dNLS(1)-Volterra system hierarchy given by the 

t2n+l = 0 reduction of  the HMM corresponds to the following points in the Sato periodic 

flag manifold F1 (2). 
(i) In the 2m dimensional case 
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V = C{ (a  n+m, 0),  ( A n+m+l F(A) ,  a n-m+l ) }n_>0, 
W = C{(,h.n+m, 0 ) ,  (~n+mF(,,~),an-m)}n>_O. 

(ii) For the 2m + 1 case 

V = C{ ( a n+m+l , 0), ( a n+'+l F ( a ) ,  A n-m) }n_>0, 

W = C{  ( 1~ n+n', 0 ) ,  ( a n+m+l F(A) ,  A n-m) },>0. 

The reduced string equation is no longer connected with a symmetry of the integrable 
hierarchy, as the translational and scaling symmetries preserve the dNLS ( 1 )-reduction of 
NLS and the Galilean one does not. We are looking for reduced solutions, i.e. solutions 
of the dNLS(1) system hierarchy which remain fixed under the action of the vector 

field X of the NLS system hierarchy, and only when a = 0 can be understood as a 
self-similarity condition within the dNLS system hierarchy. Again, the departure point 
is a solution of the heat hierarchy, v = 0 and 02nu = O~u. 

Observe that if the condition b = 0 is removed then the above theorem gives the 
points corresponding to general self-similar solutions obtained from the heat hierarchy 
through a chain of consecutive B~icklund transformations. None of these points belong 

to the Segal-Wilson periodic flag manifold. 
When c 4= 1 the moduli space is not FI ~2) but a line bundle over it. This follows 

from the factorization problem, g,_ takes its values in L - ( S L ( 2 , C ) , C ) ,  so that the 
moduli space is L(SL(2,  C),  C ) / L ~  (SL(2, C),  C). Recalling that L~-(SL(2, C),  C) 
N+SL(2, {2)--loops in L+SL(2, C) such that its holomorphic extension to the interior 
of S 1 when evaluated at a = 0 is strictly upper triangular--one easily concludes that this 

moduli space is a line bundle over the periodic flag manifold. 

7. Miura type map between the NLS and dNLS(c) hierarchies 

Given a solution to the dNLS(c) system hierarchy one can obtain through a Miura 
type transformation a solution to the NLS system hierarchy, see for example [ I0]. 

Proposition 21. The set of functions {pC.), q~n)}nez defined by 

p~n) :u<n)exp ( - ( c  - 1)02-' (u~n)v~n))) , (7.1) 

q(n) = (_02v(n) +cu(m (v(m)2) exp (( c - 1)02-, (u(n)v(n))) , (7.2) 

are solutions of the NLS system hierarchy if u (n) , v (n) are solutions of the dNLS(c) 

system hierarchy. 

For the dNLS (c) we are dealing with the principal realization of an A{ 1) type affine 
Lie algebra. We can construct the NLS system hierarchy within this principal realization 
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(tn H t2n) by modifying the induced Birkhoff factorization. In this approach the NLS- 
Toda system hierarchy appears associated with the generator T -2. A moment of thought 
is enough to realize that the geometrical construction of the dNLS(c) system hierarchy 

can be done in the loop group LSL(2, C) and inducing the classical r-matrix introduced 

previously. We choose the principal realization because of the absence of square roots 

in the spectral parameter. 
The periodic flag manifold FI (2) is a CP 1 bundle over the Grassmannian Gr (2), 

with a projection map, say or. The Miura type map between NLS and dNLS( 1 ) can be 

interpreted, in the spirit of [27], as this projection map. Moreover, one has the following 

commutative diagram: 

FI (2) , NLS 

7r~ l Miura type map 

Gr ~2) , dNLS(1).  

For c 4: 1, the periodic flag manifold is replaced by a line bundle over it, say £.  The 

projection map nr to F1 ~2) gives the Miura transformation defined by the equations (5.2) 
and (5.3) between dNLS(c) and dNLS(1).  Now, the commutative diagram is 

£ ~ dNLS (c) 

at+ IMiura type map: Eqs. (5.2), (5.3) c--q 

F1 ~2~ , dNLS(1) 

7r I + Miura type map: Eqs. (7.1), (7.2), c=l 

Gr (2) ~ NLS. 

The lattice associated to the NLS system hierarchy and the generator T - l - - i n  the 

principal realization--can be shown to be as follows. 

Proposition 22. Suppose a set {pC,), q(n) )n~z satisfying 

02p(n) = p(n+l) (p(n))2q(n+l), 
Ozq~n+l)=_q~n) +p¢n) (q~n+l)) 2 , 

q(n+2) = _ l ip (n ) .  

Suppose also that for some n the functions p~n), q~n) are solutions of  the NLS system 
hierarchy. Then, all of them are solutions. 

Eqs. (4.4) and (4.6) represent this lattice-differential system but now the 1-form X ¢") 
is the one defined in (4.7) after the map ,~"E H ,,~2n+lE, ~nH H ~2nH, ,~nF ~ A2n-IF 

and instead of 7"+ ~n) one uses 

O(+n) = (A+A-'p(n)q(n+') p(n)) 
A-2q(n+l) A-I - 
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The families {p~2n), q(2n) }nrz and {p(2n+l), q(2,+l)}nrZ are solutions of the NLS-Toda 
system hierarchy. The connection between both is 

p(n+l)  = c92p(n) _ (p{n)) 2 / p ( n - l ) .  ( 7 . 3 )  

Observe that "7"<~+1).+ = O~+ "+l) • O~+ "), so this lattice can be considered as a "square root" 
of the NLS-Toda system hierarchy. 

The mysterious square root of the Toda chain or of the Weyl action can be easily 
understood once the loop group LSL(2,C)  is embedded as a subgroup in a larger 
one, for example LSL(3, C).  For this case, A~ 1), the translational subgroup of the affine 
Weyl group is a 2-dimensional Abelian group with generators Tl, T2 [ 14]. The integrable 
system associated with the Birkhoff factorization in this loop group will be a generalized 
NLS system hierarchy [8].  

If we consider the reduction to the subgroup LS(GL(2,  C) × C) we have that the ac- 
tion of the translational group by right multiplication of 7]- I = diag(,L .~-1, 1 ) and 7"2-1 = 
diag( 1, A, A -j  ) preserves the reduction. To each g = (h, 1 /deth)  E LS(GL(2, C) × C),  
h E LGL(2, C),  we associate ~ := (1/dv/d-~-h) - h C LSL(2, C). Moreover, with this 
map the reduction gives the NLS system hierarchy and the action of TI = T is the one 
giving the Toda chain. For 7"2 we have 

7"2 "-'~g= T -1/2 " ~,. 

This implies that the square root is a consequence of the reduction A~ l) --+ A~j j}, and 
models the reduced action of the T2. 
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